

10 Summary: Review of two Cauchy problems and some practice problems

10.1 Comparison of the two second-order Cauchy problems

1D Heat equation

$$u_t = Du_{xx} + \mathbb{S}(x, t) \quad |x| < \infty, t > 0$$

homogeneous case: $\mathbb{S} \equiv 0$

General solution in this case:

$$u(x, t) = C_1 \int_0^{\frac{x}{2\sqrt{Dt}}} e^{-s^2} ds + C_2$$

Cauchy Problem: $|x| < \infty, t > 0$

$$\begin{aligned} u_t &= Du_{xx} + \mathbb{S}(x, t) \quad |x| < \infty, t > 0 \\ u(x, 0) &= f(x), \quad |x| < \infty \end{aligned}$$

$$u(x, t) = \frac{1}{2\sqrt{\pi}Dt} \int_{-\infty}^{\infty} e^{-(x-y)^2/4Dt} f(y) dy + \frac{1}{2\sqrt{\pi}D(t-\tau)} \int_0^t \int_{-\infty}^{\infty} e^{-(x-y)^2/4D(t-\tau)} \mathbb{S}(y, \tau) dy d\tau$$

Properties to remember:

solutions are infinitely differentiable

infinite speed of propagation

no real characteristics

information from initial data
gradually lost

1D Wave equation

$$u_{tt} = c^2 u_{xx} + \mathbb{S}(x, t) \quad |x| < \infty, t > 0$$

$$u(x, t) = F(x - ct) + G(x + ct)$$

$$\begin{aligned} u_{tt} &= c^2 u_{xx} + \mathbb{S}(x, t) \quad |x| < \infty, t > 0 \\ u(x, 0) &= f(x), \quad u_t(x, 0) = g(x), \quad |x| < \infty \end{aligned}$$

$$u(x, t) = \frac{1}{2} \{ f(x - ct) + f(x + ct) \} + \frac{1}{2c} \int_{x-ct}^{x+ct} g(y) dy + \frac{1}{2c} \int_0^t \int_{\Delta(x,t)} \mathbb{S}(y, \tau) dy d\tau$$

solutions are no more smooth than the i.c.s

finite speed of propagation (c)

2 families of real characteristics

information from initial data transported
indefinitely along characteristics

Recall that we previously made a partial comparison of the solution to the

wave and heat equations by considering the two problems

$$\begin{aligned} \frac{\partial^2 u}{\partial t^2} &= \frac{\partial^2 u}{\partial x^2} \quad -\infty < x < \infty, \quad t > 0 \\ u(x, 0) &= H(1 - |x|), \quad \frac{\partial u}{\partial t}(x, 0) = 0, \quad |x| < \infty \end{aligned} \tag{1}$$

and

$$\begin{aligned} \frac{\partial u}{\partial t} &= \frac{\partial^2 u}{\partial x^2} \quad -\infty < x < \infty, \quad t > 0 \\ u(x, 0) &= H(1 - |x|), \quad |x| < \infty \end{aligned} \tag{2}$$

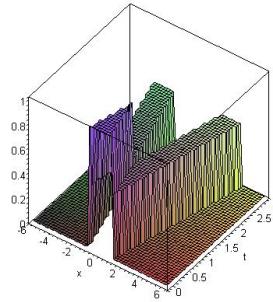


Figure 1: Graph of solution to problem 1

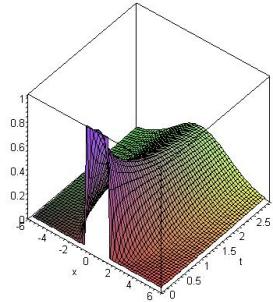


Figure 2: Graph of solution to problem 1

Figure 1 shows the propagation of the singularities along the real characteristics, and also shows the nature of Huygen's principle and conservation of energy principle, while Figure 2 shows the forgetfulness of the solution to the heat equation.

10.2 Extra practice problems

1. (a) Consider the wave equation $u_{tt} = u_{xx}$ in $\mathbb{R} \times \mathbb{R}^+$, with generic initial data $u(x, 0) = f(x)$, $u_t(x, 0) = g(x)$. Write down d'Alembert's formula for the solution to the Cauchy problem, and for any given (x_0, t_0) in the domain, draw a characteristic triangle associated with the point (x_0, t_0) . Label everything in the graph, including the equation for the characteristics through the point, and the domain of dependence on the x -axis.
(b) Now define $f(x) = \sin(2x)$, $g(x) = e^{-|x|}$ and compute the solution $u(x, t)$.
2. Consider the equation $u_{tt} + e^{-t}u_t = u_{xx} + \sinh(x)u_x$. Is the equation hyperbolic, parabolic, or elliptic? Why?
3. Given the vibrating string equation $u_{tt} = u_{xx}$ in $\mathbb{R} \times \mathbb{R}^+$, what is the definition of domain of dependence for a point (x_0, t_0) ? What is the domain of dependence for a point $(x, t) = (4, 3)$? What is the region of influence of the point $(x, t) = (3, 0)$?
4. For the problem $u_{tt} = 4u_{xx}$ in $\mathbb{R} \times \mathbb{R}^+$, $u(x, 0) = 2H(x)$, $u_t(x, 0) = H(x+1)$, construct the appropriate solution representation.
5. What is the general solution of $3u_y + u_{xy} = 0$ in terms of two general functions?
(Ans: $u = f(y)e^{-3x} + g(x)$)
6. Consider the problem $u_t = D_0e^{-at}u_{xx}$ in $\mathbb{R} \times \mathbb{R}^+$, with $u(x, 0) = f(x)$. (So we have a process where the diffusivity is slowly decreasing, $a > 0$ small.) Write the representation of the solution.
(Hint: let $u(x, t) = v(x, \tau)$, where $\tau := \int_0^t D_0e^{-as}ds$, so $\frac{\partial}{\partial t} = D_0e^{-at} \frac{\partial}{\partial \tau}$.)
7. Write the solution formula for the problem $u_t = u_{xx} - 5$, $u(x, 0) = f(x)$.
8. For the linear cable equation for a nerve dendrite, $Cv_t + \frac{v-E}{R} = \frac{a}{2R_i}v_{xx}$, let $v(x, 0) = v_0(x)$, and reduce the equation down to a heat equation for w via the transformation $v(x, t) = E + e^{-t/RC}w(x, t)$, and solve the w equation problem. Then write the solution for $v(x, t)$.
9. What type equation is $u_{xx} + 4u_{xy} + 3u_{yy} + 3u_x - u_y + 2u = 0$?

10. Find the characteristics of the equation $u_t + xu_x = 0$.
 (Ans: $t = \ln|x| + K$)

11. Solve $u_t + u_x = u^2$, $u(-x, x) = x \in \mathbb{R}$.
 (Ans: $u(x, t) = \frac{2t-2x}{4-t^2+x^2}$)

12. Solve $xu_x + yu_y = 1$, $u(1, y) = \ln(y)$, $y > 0$.

13. For the Cauchy problem $u_{tt} = 0.01u_{xx}$, $u(x, 0) = e^{-x^2}$, $u_t(x, 0) = 0$, where is the peak of the waves when $t = 10$?
 (Ans: At $x = \pm 1$.)

14. In the specified domain determine the type of equation (elliptic, hyperbolic, parabolic). If the equation changes type in the domain, explain where it is which type.

(a) $u_{xx} - 6u_{xy} + 12u_{yy} - u_y = x + y$ in the plane.
 (b) $u_{xx} + 2yu_{xy} + xu_{yy} - u_x + 8u = 0$ for $x, y > 0$.

(Ans: (a) elliptic everywhere; (b) elliptic (resp. hyperbolic) below (above) curve $x - y^2 = 0$, and parabolic on the curve)